Reliability Verification, Testing, and Analysis in Engineering Design

Gary S. Wasserman
Wayne State University
Detroit, Michigan, U.S.A.
The writing of this book continues a long tradition at Wayne State University (WSU). B. Epstein (1948, 1954, 1958, 1960), a mathematics professor at WSU, pioneered much of the early development of practical life models based on the exponential and extreme value distributions. Later on, Kapur and Lamberson (1977) authored a very popular textbook on engineering reliability that continues to be in wide use today, despite the fact that it emphasizes the use of linear estimation schemes, which are no longer in use. To continue this long tradition, I have written a book that I believe accurately captures the theory and practice behind many of the design verification techniques used in industry.

This book was inspired by my unique opportunity to live and work in metropolitan Detroit, the motor capital of the world. This has afforded me some real-world experiences that I have enjoyed, such as the opportunity to consult with automakers and their tier-1 suppliers. When designing test verification plans, I have seen engineers panic when they realize they do not have the necessary training and background to decide how many items should be placed on test. My motivation for writing this book is based on the need to provide reliability engineers with a reference book that can help them meet these challenges.

This book can be used in the classroom to expose students to the theory and practice of applied life data analysis, or it can be used as a reference book for practicing reliability engineering professionals and their counterparts. Consultants and academicians working in allied areas are also apt to use this book as a
reference. This text contains numerous worked-out examples using either Microsoft® Excel or MINITAB™ statistical computing software, along with a brief list of suggested exercises at the end of each chapter. The former product was chosen for its obvious, ubiquitous nature. The latter was chosen because it has become a very popular choice in the classroom and among Fortune 500 companies who wish to quickly and easily analyze small industrial data sets. The reader is not required to use these products, however, as they are presented only to demonstrate the underlying implementation of efficient computer-based procedures. In keeping with the spirit of this text, the reader might be amazed to find that reference tables for looking up normal probabilities do not appear in this book. The reader is encouraged to use the built-in routines of Excel and similar software to look up these values. Numerous examples appear throughout the book, which should serve to assist the reader in locating these values.

Some of the features and design formulas presented in this text are unique and some are just unusual:

- In the introductory chapter, an overview of modern reliability thinking of the late twentieth and early twenty-first centuries is presented, including emphasis on understanding what is a failure, the importance of understanding customer usage profiles, and the deployment of reliability throughout the product design process from cradle to grave. Although this chapter cannot serve as a comprehensive overview of reliability management techniques, I am certain the reader will find this information useful. Additional topics include the use of Quality Function Deployment for reliability planning, FMEA/FMECA, and the use of DVP&R and its relationship with FMEA.

- The book makes use of Microsoft® Excel spreadsheet and Tool > Solver and Goal Seek nonlinear search procedures wherever possible. Actual spreadsheets are reproduced along with background information on how the procedures are to be run. The book demonstrates how Excel can be used to develop both Fisher matrix and likelihood ratio estimates of reliability metrics. In the latter case, the use of maximum likelihood estimation techniques for developing asymptotic properties is clearly explained.

- MINITAB™ is used to develop Monte Carlo interval estimates of reliability metrics. This is not new, but the reader will find very few textbooks that cover the practical use of Monte Carlo to this extent. The book shows how simple macros can be written in MINITAB™ to run Monte Carlo estimation routines.

- The theory behind the use of rank estimators and the development of small sample binomial confidence limits for success-failure testing is presented to the user in the Appendices to Chapters 2 and 6. The
formulas are shown to be different. Their differences have never before been published in a textbook! The equivalence between Kaplan–Meier, other product-limit estimators including the modified Kaplan–Meier, and Johnson’s formula for estimating the rank of multiply censored data is also demonstrated. This work has also never appeared in a textbook before.

- I closely follow the recommendations by Abernethy (1996), who advises the use of inverse rank regression techniques for estimating the parameters of a distribution (from probability plots). This is not the method usually recommended; however, we now see that the latest release of MINITAB™ (version 13) performs rank regression this way!
- One of the most comprehensive and concise discussions of goodness-of-fit methodology, including the use of ordinary regression R^2 statistics to assess fit, is provided. The book also describes how to identify mixtures and competing failure modes from the examination of probability plots, and introduces the use of mixture distributional forms by Tarum (1996) for modeling reliability bathtub phenomena.
- Chapter 6 presents formulas for extended bogey testing, which are usually presented in a more theoretical context. It also discusses the use of tail testing techniques and fully describes the use of a Bayesian adjustment, which permits a sample size reduction of one.
- The book surveys both the use of accelerated life techniques for modeling life versus stress relationships and the use of HALT/HASS (see Chapter 7) for quickly identifying design deficiencies. In the former case, we show how to use MINITAB™ built-in accelerated life-testing routines for modeling the Arrhenius relationship using maximum likelihood techniques for estimating the parameters of the Arrhenius model.
- The book attempts to provide balance by surveying the use of computer-aided engineering techniques for design verification. The uses of finite element models, probabilistic design, etc., are surveyed. The reader is made aware that in the future testing will be used exclusively for confirmation, not for troubleshooting deficient designs!
- Chapter 10 explains the use of simple quantile–quantile (Q–Q) plots for examining differences between life data sets and for estimating acceleration factors.

The coverage of theory is intentionally varied. For example, in Chapter 3, I introduce basic foundations of distributional modeling, including the use of the Z-transform for developing estimates of normal fractiles. This is done to provide some background and reference material to a broad audience of reliability professionals and students. Much of the more advanced material is placed in appendices, and the more advanced material on likelihood estimation is post-
poned until Chapter 9. Everyone should find something to gain from this book, and our less experienced readers will hopefully find expanded uses for this text as they continue to progress.

Finally, I wish to thank the many informal, formal, and anonymous people who have reviewed this text. In particular, I wish to acknowledge the following people: Dave Deepak, Harley-Davidson; Dr. Yavuz Goktas, Baxter Healthcare Corp.; Ron Salzman, Ford Motor Company; James McLinn, Rel-Tech; Leonard Lamberson, Western Michigan University; and the students of Reliability Engineering class, IE 7270, Fall Semester 1999, Wayne State University.

Gary S. Wasserman
Contents

Preface

1. A Modern View of Reliability Concepts and Design for Reliability
 1.1 What Is Reliability?
 1.1.1 Definition of Reliability
 1.1.2 What Is a Failure?
 1.1.3 Three Reasons Why Products Fail
 1.1.4 History of Reliability in the United States
 1.2 Overview of Reliability Modeling
 1.2.1 Six Basic Approaches to Modeling Product Reliability
 1.2.2 Failure Mechanisms
 1.2.3 Establishing Reliability Specifications
 1.3 An Overview of Reliability Planning
 1.3.1 Elements of Design for Reliability
 1.3.2 Deploying Reliability Requirements
 1.3.3 Reliability Prediction
 1.3.4 Cost of Reliability and Product Testing
 1.3.5 Reliability Bathtub Curve

Copyright © 2002 Marcel Dekker, Inc.
1.3.6 Life-Cycle Costing

1.4 Enablers for a Successful Reliability Planning Effort

1.5 Reliability Growth Management

1.6 Exercises

Appendix 1A. FMEA/FMECA/DVP&R

2. Preliminaries, Definitions, and Use of Order Statistics in Reliability Estimation

2.1 Reliability Metrics
 2.1.1 Reliability Functions
 2.1.2 Population Moments
 2.1.3 Worked-Out Examples

2.2 Empirical Estimates of $F(t)$ and Other Reliability Metrics: Use of Order Statistics
 2.2.1 Naive Rank Estimator
 2.2.2 Mean and Median Rank Estimators
 2.2.3 Use of Rank Estimators of $F(t)$ as a Plotting Position in a Probability Plot
 2.2.4 Beta-Binomial and Kaplan–Meier Confidence Bands on Median Rank Estimator
 2.2.5 Empirical Estimates of Other Reliability Metrics: $R(t)$, $\lambda(t)$, $f(t)$, and $H(t)$
 2.2.6 Working with Grouped Data

2.3 Working with Censored Data
 2.3.1 Categorizing Censored Data Sets
 2.3.2 Special Staged Censored Data Sets
 2.3.3 Nonparametric Estimation of Reliability Metrics Based on Censored Data
 2.3.4 Developing Empirical Reliability Estimates of Warranty or Grouped Censored Data

2.4 Exercises

Appendix 2A.

3. A Survey of Distributions Used in Reliability Estimation

3.1 Introduction

3.2 Normal Distribution
 3.2.1 Central Tendency
 3.2.2 Properties of Normal Distribution

3.3 Lognormal Distribution

3.4 Exponential Distribution

3.5 Weibull Distribution
3.5.1 Weibull Power-Law Hazard Function
3.5.2 Weibull Survival Function
3.5.3 Properties of the Weibull Distribution
3.5.4 Three-Parameter Weibull
3.6 Extreme Value (Gumbel) Distribution
3.7 Other Distributions Used in Reliability
 3.7.1 Logistic and Log-Logistic Distributions
 3.7.2 Gamma and Log-Gamma Distributions
 3.7.3 Miscellaneous Other Noteworthy Distributions
3.8 Mixtures and Competing Failure Models
3.9 Exercises

Appendix 3A. Background
Appendix 3B. Weibull Population Moments

4. Overview of Estimation Techniques
4.1 Introduction
4.2 Rank Regression and Probability Plotting Techniques
 4.2.1 Normal Probability Plotting Techniques
 4.2.2 Weibull Probability Plotting Techniques
4.3 Maximum Likelihood Estimation
 4.3.1 Introduction to ML Estimation
 4.3.2 Development of Likelihood Confidence Intervals
 4.3.3 Maximum Likelihood Estimation of Normal Parameters, \(\mu \) and \(\sigma \), for Complete Sample Sets
 4.3.4 ML Estimation of Normal Parameters \(\mu \) and \(\sigma^2 \) in the Presence of Censoring
 4.3.5 ML Estimation of Weibull Parameters \(\theta \) and \(\beta \)
4.4 Simulation-Based Approaches for the Development of Normal and Weibull Confidence Intervals
4.5 Other Estimators
 4.5.1 Best Linear Estimators of \(\mu \) and \(\sigma \)
4.6 Recommendations for Choice of Estimation Procedures
4.7 Estimation of Exponential Distribution Properties
 4.7.1 Estimating the Exponential Hazard-Rate Parameter, \(\lambda \), or MTTF Parameter, \(\theta \)
 4.7.2 Exponential Confidence Intervals
 4.7.3 Use of Hazard Plots
4.8 Three-Parameter Weibull
4.9 Exercises

Appendix 4A. Monte Carlo Estimation
Appendix 4B. Reference Tables and Charts

Copyright © 2002 Marcel Dekker, Inc.
5. Distribution Fitting

5.1 Introduction
5.2 Goodness-of-Fit Procedures
 5.2.1 Goodness-of-Fit Tests Based on Differences Between
 Empirical Rank and Fitted Distributions
 5.2.2 Rank Regression Tests
 5.2.3 Other Goodness-of-Fit Tests
5.3 Exercises
Appendix 5A.

6. Test Sample-Size Determination

6.1 Validation/Verification Testing
 6.1.1 Verification Testing
 6.1.2 Specifying a Reliability Requirement
 6.1.3 Success–Failure Testing
 6.1.4 Testing to Failure
 6.1.5 Strategies for Reducing Sample-Size Requirements
 6.1.6 Underlying Distributional Assumption
6.2 Success Testing
 6.2.1 Bayesian Adjustment to Success Formula
6.3 Success–Failure Testing
 6.3.1 Use of Binomial Nomograph
 6.3.2 Exact Formulas for Binomial Confidence Limits in
 Success–Failure Testing
 6.3.3 Large-Sample Confidence Limit Approximation on
 Reliability
 6.3.4 Bayesian Adjustment to Success–Failure Testing
 Formula
 6.3.5 Correctness of Binomial Success–Testing Formula
6.4 Exponential Test-Planning Formulas
 6.4.1 Success Testing Under an Exponential Distribution
 Assumption Using Alternate Formula
 6.4.2 Extended Bogey Testing Under Exponential Life
 Model
 6.4.3 Extended Success Testing—Exponential Distribution
 6.4.4 Risks Associated with Extended Bogey Testing
 6.4.5 Reduced Test Duration
6.5 Weibull Test Planning
 6.5.1 Weibayes Formulas
 6.5.2 Adequacy of Weibayes Model
6.5.3 Chrysler Success–Testing Requirements on Sunroof Products

6.6 Tail Testing
6.7 Failure Testing
6.8 Other Management Considerations
6.9 Summary
6.10 Exercises

Appendix 6A. Binomial Distribution
Appendix 6B. Bayesian Estimation of Failure Fraction, p
Appendix 6C. Weibull Properties

7. Accelerated Testing

7.1 Accelerated Testing
 7.1.1 Benefits/Limitations of Accelerated Testing
 7.1.2 Two Basic Strategies for Accelerated Testing

7.2 Highly Accelerated Life Testing (HALT)

7.3 Accelerated Life Test
 7.3.1 Accelerated Cycling or Time-Compression Strategies
 7.3.2 Stress-Life Relationships at Two Different Stress Levels

7.4 Use of Physical Models
 7.4.1 The Arrhenius Model
 7.4.2 Other Acceleration Models

7.5 Use of Linear Statistical Models in Minitab for Evaluating Life Versus Stress Variables Relationships
 7.5.1 Arrhenius Linear Model in Minitab
 7.5.2 Use of Regression with Life Data Procedure in Minitab
 7.5.3 Use of Proportional Hazards Models

7.6 Closing Comments
7.7 Exercises

Appendix 7A. Q–Q Plots
Appendix 7B. ML Estimation of Parameters in Regression Model with Multiply Censored Life Data

8. Engineering Approaches to Design Verification

8.1 Computer-Aided Engineering Approaches
 8.1.1 Finite-Element Analysis
 8.1.2 Other Computer-Aided Engineering (CAE) Approaches
8.2 Probabilistic Design
 8.2.1 Simple Strength Versus Stress Models
 8.2.2 Multivariate Strength Versus Stress Competition
 8.2.3 Probabilistic FEA
8.3 Parametric Models
8.4 Summary
8.5 Exercises
Appendix 8A. First Order Reliability Method (FORM)

9. Likelihood Estimation (Advanced)
 9.1 Maximum Likelihood (ML) Point Estimation
 9.1.1 Maximum Likelihood Estimation of Exponential Hazard Parameter, \(\lambda \)
 9.1.2 ML Estimates of Normal Parameters, \(\mu \) and \(\sigma^2 \)
 9.1.3 Worked-Out Example
 9.1.4 Weibull Distribution: ML Estimation of \(\beta \) and \(\theta \)
 9.1.5 ML Estimation of Three-Parameter Weibull Distribution
 9.1.6 Other Modified Estimation Procedures for the Three-Parameter Weibull Distribution
 9.2 ML-Based Approaches for Confidence Interval Estimation
 9.2.1 Exponential Confidence Intervals
 9.2.2 Asymptotic (Large-Sample) Confidence Intervals
 9.2.3 Confidence Intervals on Normal Metrics
 9.3 Exercises
Appendix 9A. Algorithm by Wolynetz (1979) for Obtaining ML Estimates of Normal Parameters, \(\mu \) and \(\sigma \)
Appendix 9B. Proof: The Exponential Total Unit Time on Test Variable, \(T \), Follows a Gamma \((r\lambda)\) Distribution

10. Comparing Designs
 10.1 Graphical Procedures Based on Probability or Rank Regression Plots
 10.2 Q–Q Plots
 10.2.1 Technical Note: Use of Q–Q Plots
 10.2.2 Inferential Statistics for Using Q–Q Plots
 10.3 Use of Likelihood Theory for Assessing Differences
 10.4 Approximate \(F \)-Test for Differences—Weibull and Exponential Distribution

Copyright © 2002 Marcel Dekker, Inc.
10.4.1 Test for Differences in the Exponential MTTF Parameter, θ
10.4.2 Approximate Test for Differences with Weibull Shape Parameter
10.4.3 Use of Approximate F-Tests

10.5 Summary
10.6 Exercises

References